The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.

نویسندگان

  • Beiyan Nan
  • Jigar N Bandaria
  • Kathy Y Guo
  • Xue Fan
  • Amirpasha Moghtaderi
  • Ahmet Yildiz
  • David R Zusman
چکیده

Gliding motility in Myxococcus xanthus is powered by flagella stator homologs that move in helical trajectories using proton motive force. The Frz chemosensory pathway regulates the cell polarity axis through MglA, a Ras family GTPase; however, little is known about how MglA establishes the polarity of gliding, because the gliding motors move simultaneously in opposite directions. Here we examined the localization and dynamics of MglA and gliding motors in high spatial and time resolution. We determined that MglA localizes not only at the cell poles, but also along the cell bodies, forming a decreasing concentration gradient toward the lagging cell pole. MglA directly interacts with the motor protein AglR, and the spatial distribution of AglR reversals is positively correlated with the MglA gradient. Thus, the motors moving toward lagging cell poles are less likely to reverse, generating stronger forward propulsion. MglB, the GTPase-activating protein of MglA, regulates motor reversal by maintaining the MglA gradient. Our results suggest a mechanism whereby bacteria use Ras family proteins to modulate cellular polarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell polarity/motility in bacteria: closer to eukaryotes than expected?

The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces and periodically reverses the direction of movement. Work published in this issue of The EMBO Journal (Leonardy et al, 2010) reports on the small GTPase MglA that ensures the correct polarity of the motility engines through its GTP/GDP cycle in conjunction with its cognate GAP, MglB. MglA has also been shown to interact wit...

متن کامل

Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories.

Many bacterial species use gliding motility in natural habitats because external flagella function poorly on hard surfaces. However, the mechanism(s) of gliding remain elusive because surface motility structures are not apparent. Here, we characterized the dynamics of the Myxococcus xanthus gliding motor protein AglR, a homolog of the Escherichia coli flagella stator protein MotA. We observed t...

متن کامل

The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions

In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin ...

متن کامل

Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements.

Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mut...

متن کامل

Isolation of Herpetosiphon giganteus and Ultrastructure Analysis by Electron Microscopy

Herpetosiphon giganteus is a filamentous gliding bacterium. Gliding motility is the movement of the cells over surfaces without the aid of flagella. The mechanism responsible for bacterial gliding motility has not been known and there are only a few data on Herpetosiphon giganteus. The aim of this study was to observe the ultrastructure and negative staining of isolated strains of Herpetosiphon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 2  شماره 

صفحات  -

تاریخ انتشار 2015